An Immune Concentration Based Virus Detection Approach Using Particle Swarm Optimization
نویسندگان
چکیده
This paper proposes an immune concentration based virus detection approach which utilizes a two-element concentration vector to construct the feature. In this approach, ‘self’ and ‘nonself’ concentrations are extracted through ‘self’ and ‘nonself’ detector libraries, respectively, to form a vector with two elements of concentrations for characterizing the program efficiently and fast. Several classifiers including k-nearest neighbor (KNN), RBF neural network and support vector machine (SVM) with this vector as input are then employed to classify the programs. The selection of detector library determinant and parameters associated with a certain classifier is here considered as an optimization problem aiming at maximizing the accuracy of classification. A clonal particle swarm optimization (CPSO) algorithm is used for this purpose. Experimental results demonstrate that the proposed approach not only has a very much fast speed but also gives around 98% of accuracy under optimum conditions.
منابع مشابه
A TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION
In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...
متن کاملA New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection
Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملINVERSE FREQUENCY RESPONSE ANALYSIS FOR PIPELINES LEAK DETECTION USING THE PARTICLE SWARM OPTIMIZATION
Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is...
متن کاملFraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کامل